论文标题
神经混合分布回归
Neural Mixture Distributional Regression
论文作者
论文摘要
我们提出了神经混合物分布回归(NMDR),这是一个整体框架,旨在估计由柔性添加剂预测变量定义的分布回归的复杂有限混合物。我们的框架能够在高维设置中处理大量潜在不同分布的混合物,可以进行有效且可扩展的优化,并可以应用于将结构化回归模型与深神经网络相结合的最新概念。尽管许多现有的混合模型方法解决了优化的挑战,并在特定模型假设下提供了融合的结果,但我们的方法是无用的,而是利用在深度学习中建立良好的优化者。通过广泛的数值实验和高维深度学习应用,我们提供了证据表明,所提出的方法对现有方法具有竞争力,并且在更复杂的情况下效果很好。
We present neural mixture distributional regression (NMDR), a holistic framework to estimate complex finite mixtures of distributional regressions defined by flexible additive predictors. Our framework is able to handle a large number of mixtures of potentially different distributions in high-dimensional settings, allows for efficient and scalable optimization and can be applied to recent concepts that combine structured regression models with deep neural networks. While many existing approaches for mixture models address challenges in optimization of such and provide results for convergence under specific model assumptions, our approach is assumption-free and instead makes use of optimizers well-established in deep learning. Through extensive numerical experiments and a high-dimensional deep learning application we provide evidence that the proposed approach is competitive to existing approaches and works well in more complex scenarios.