论文标题
$ \ mathbb {q} _2 $的添加形式两次添加形式的溶解度两次奇数。
Solubility of Additive Forms of Twice Odd Degree over Ramified Quadratic Extensions of $\mathbb{Q}_2$
论文作者
论文摘要
我们确定变量的最小数量$γ^*(d,k)$,保证每种添加剂的$ d = 2m $,$ m $ odd,$ m \ ge 3 $的添加剂解决方案,$ \ mathbb {q} _2 $。我们证明,如果$ k $是$ \ {\ mathbb {q} _2(\ sqrt {2}),\ mathbb {q} _2(\ sqrt {10}}),\ \ mathbb {q} \ Mathbb {q} _2(\ sqrt {-10})\} $,$γ^*(d,d,k)= \ frac {3} {2} d $,如果$ k $是$ \ \ \ \ \ \ \ {\ MathBB {Q} _2(Q} _2( \ Mathbb {q} _2(\ sqrt {-5})\} $,$γ^*(d,k)= d+1 $。案例$ d = 6 $以前是众所周知的。
We determine the minimal number of variables $Γ^*(d, K)$ which guarantees a nontrivial solution for every additive form of degree $d=2m$, $m$ odd, $m \ge 3$ over the six ramified quadratic extensions of $\mathbb{Q}_2$. We prove that if $K$ is one of $\{\mathbb{Q}_2(\sqrt{2}), \mathbb{Q}_2(\sqrt{10}), \mathbb{Q}_2(\sqrt{-2}), \mathbb{Q}_2(\sqrt{-10})\}$, $Γ^*(d,K) = \frac{3}{2}d$, and if $K$ is one of $\{\mathbb{Q}_2(\sqrt{-1}), \mathbb{Q}_2(\sqrt{-5})\}$, $Γ^*(d,K) = d+1$. The case $d=6$ was previously known.