论文标题

密集的二进制球包装和相图:重新审视

Densest binary sphere packings and phase diagram : revisited

论文作者

Koshoji, Ryotaro, Kawamura, Mitsuaki, Fukuda, Masahiro, Ozaki, Taisuke

论文摘要

我们在周期性的边界条件下重新审视最密集的二进制球包装(DBSP),并提供更新的相图,其中包括新发现的$ x -α$ plane上的12个假定的浓缩结构,其中$ x $是相对浓度,而$α$是小球的半径比。为了有效地探索DBSP,我们基于堆积方法开发了一种公正的随机搜索方法,以无偏见的方式生成初始结构和迭代平衡方法,以优化单位电池的体积,同时保持硬球的重叠,以最小化。通过这两种方法,我们发现了12个假定的DBSP,从而更新了相图,而我们的结果与先前研究的结果一致[Hopkins等,Phys。 Rev. E 85,021130(2012)]对单位电池中12个或更少球体的情况进行了较小的校正。新的12个最密集包装中的5个是在$ 0.42 \leα\ le 0.50 $的小半径范围内发现的,其中几个结构相对于包装分数彼此竞争。通过详尽的搜索,发现了多种密集的包装,因此,我们发现包装结构通过引入失真和/或组合一些局部密集的结构单元来实现高包装部分。此外,我们研究了基于空间群的DBSP与晶体的对应关系。结果表明,实际晶体中的许多结构单元,例如,$ \ mathrm {lah_ {10}} $和$ \ mathrm {srge_ {2-Δ}} $是高压阶段,可以理解为DBSP。该对应关系意味着可以有效地将最密集的球形包装用作搜索复杂晶体结构的结构原型,尤其是对于高压阶段。

We revisit the densest binary sphere packings (DBSP) under the periodic boundary conditions and present an updated phase diagram, including newly found 12 putative densest structures over the $x - α$ plane, where $x$ is the relative concentration and $α$ is the radius ratio of the small and large spheres. To efficiently explore the DBSP, we develop an unbiased random search approach based on both the piling up method to generate initial structures in an unbiased way and the iterative balance method to optimize the volume of a unit cell while keeping the overlap of hard spheres minimized. With those two methods, we have discovered 12 putative DBSP and thereby the phase diagram is updated, while our results are consistent with those of the previous study [Hopkins et al., Phys. Rev. E 85, 021130 (2012)] with a small correction for the case of 12 or fewer spheres in the unit cell. The 5 of the new 12 densest packings are discovered in the small radius range of $0.42 \le α\le 0.50$ where several structures are competitive to each other with respect to packing fraction. Through the exhaustive search, diverse dense packings are discovered and accordingly we find that packing structures achieve high packing fractions by introducing distortion and/or combining a few local dense structural units. Furthermore, we investigate the correspondence of the DBSP with crystals based on the space group. The result shows that many structural units in real crystals, e.g., $\mathrm{LaH_{10}}$ and $\mathrm{SrGe_{2-δ}}$ being high-pressure phases, can be understood as DBSP. The correspondence implies that the densest sphere packings can be used effectively as structural prototypes for searching complex crystal structures, especially for high-pressure phases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源