论文标题

平板上的近似和与缺陷平面的不均匀渗透的独特性

Approximation on slabs and uniqueness for inhomogeneous percolation with a plane of defects

论文作者

de Lima, Bernardo N. B., Martineau, Sébastien, Sanna, Humberto C., Valesin, Daniel

论文摘要

令$ \ mathbb {l}^{d} =(\ mathbb {z}^{d},\ mathbb {e}^{d})$ be $ d $ - d $ - 二级二级超尺寸lattice。我们考虑了$ \ mathbb {l}^{d} $上的不均匀的bernoulli渗透模型,其中$ s $ s $ -dimensional超平面$ \ mathbb {z}^{z}^{s}^{s} {s} {s} \ times \ time times \ {0 \} $ {d-s} $ quartibility quint obity in quartients $ qubity qubitients $ quart in quartient以概率$ p $打开。当$ p \ neq p_ {c}(d)$时,我们证明了无限群集在超批评性方面的独特性,其中$ p_ {c}(c}(d)$表示同质渗透的阈值,并且可以通过$ prient of priend of prient of prime p,q_ {c}(p,p,q_ {c})。 p_ {c}(d)$。

Let $ \mathbb{L}^{d} = ( \mathbb{Z}^{d},\mathbb{E}^{d} ) $ be the $ d $-dimensional hypercubic lattice. We consider a model of inhomogeneous Bernoulli percolation on $ \mathbb{L}^{d} $ in which every edge inside the $ s $-dimensional hyperplane $ \mathbb{Z}^{s} \times \{ 0 \}^{d-s} $, $ 2 \leq s < d $, is open with probability $ q $ and every other edge is open with probability $ p $. We prove the uniqueness of the infinite cluster in the supercritical regime whenever $ p \neq p_{c}(d) $, where $ p_{c}(d) $ denotes the threshold for homogeneous percolation, and that the critical point $ (p,q_{c}(p)) $ can be approximated on the phase space by the critical points of slabs, for any $ p < p_{c}(d) $.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源