论文标题

加速计算微力学

Accelerated computational micromechanics

论文作者

Zhou, Hao, Bhattacharya, Kaushik

论文摘要

我们提出了一种解决微力学问题的方法,该方法可以通过使用图形处理单元和其他加速器来适应大规模平行的计算。这些问题导致非线性微分方程通常在空间上是二阶,并且及时的一阶。非线性和非局部性的这种结合使得这种问题很难并行解决。但是,这种组合是非本地崩溃的结果,但线性和普遍的物理定律(运动学兼容性,平衡法则)以及非线性但本地构成关系的结果。我们提出了一个受此结构启发的操作员分割方案。管理方程式被表达为(增量)变分问题,使用增强的Lagrangian引入差异约束,例如兼容性,并且由乘数的交替方向方法可以解决所得的增量变异原理。所得算法与物理原理有自然的联系,并且还可以在结构化网格上进行大规模平行的实现。我们提出此方法并使用它来研究两个例子。第一个涉及有限弹性的长波长不稳定性,并使我们能够针对先前的数值模拟验证该方法。我们还使用此示例来研究收敛和并行性能。第二个例子涉及液晶弹性体的微观结构演化,并为这些材料的某些违反直觉特性提供了新的见解。我们使用此示例来验证模型和对实验观察的方法。

We present an approach to solving problems in micromechanics that is amenable to massively parallel calculations through the use of graphical processing units and other accelerators. The problems lead to nonlinear differential equations that are typically second order in space and first order in time. This combination of nonlinearity and nonlocality makes such problems difficult to solve in parallel. However, this combination is a result of collapsing nonlocal, but linear and universal physical laws (kinematic compatibility, balance laws), and nonlinear but local constitutive relations. We propose an operator-splitting scheme inspired by this structure. The governing equations are formulated as (incremental) variational problems, the differential constraints like compatibility are introduced using an augmented Lagrangian, and the resulting incremental variational principle is solved by the alternating direction method of multipliers. The resulting algorithm has a natural connection to physical principles, and also enables massively parallel implementation on structured grids. We present this method and use it to study two examples. The first concerns the long wavelength instability of finite elasticity, and allows us to verify the approach against previous numerical simulations. We also use this example to study convergence and parallel performance. The second example concerns microstructure evolution in liquid crystal elastomers and provides new insights into some counter-intuitive properties of these materials. We use this example to validate the model and the approach against experimental observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源