论文标题

单型排的符号轨道

Symplectic orbits of unimodular rows

论文作者

Syed, Tariq

论文摘要

对于平稳的仿射代数$ r $,尺寸$ d \ geq 3 $在field $ k $上和可变可倒数的矩阵$χ$等级$ 2n $,$ sp(χ)$ sp(χ)$ 2N $的可转让矩阵$ 2N $的$ 2N $ $ $超过$ r $ co $ um的$ quy um_ $ quy的$ r $同样}长度$ 2N $超过$ r $。在本文中,我们证明$ sp(χ)$在$ um_ {2n}(r)$上进行过渡,如果$ k $是代数关闭的,$ d! \ in K^{\ times} $和$ 2N \ geq d $。

For a smooth affine algebra $R$ of dimension $d \geq 3$ over a field $k$ and an invertible alternating matrix $χ$ of rank $2n$, the group $Sp(χ)$ of invertible matrices of rank $2n$ over $R$ which are symplectic with respect to $χ$ acts on the right on the set $Um_{2n}(R)$ of unimodular rows of length $2n$ over $R$. In this paper, we prove that $Sp(χ)$ acts transitively on $Um_{2n}(R)$ if $k$ is algebraically closed, $d! \in k^{\times}$ and $2n \geq d$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源