论文标题

风景:方案规范和数据生成的语言

Scenic: A Language for Scenario Specification and Data Generation

论文作者

Fremont, Daniel J., Kim, Edward, Dreossi, Tommaso, Ghosh, Shromona, Yue, Xiangyu, Sangiovanni-Vincentelli, Alberto L., Seshia, Sanjit A.

论文摘要

我们为网络物理系统的设计和分析提出了一种新的概率编程语言,尤其是基于机器学习的系统。具体来说,我们认为训练系统的问题是罕见事件的鲁棒性,在不同条件下测试其性能以及调试失败。我们展示了概率编程语言如何通过指定编码有趣类型的输入类型,然后对这些分布来生成专业培训和测试数据来帮助解决这些问题。更一般而言,这些语言可用于编写环境模型,这是任何正式分析的重要先决条件。在本文中,我们专注于自动驾驶汽车和机器人等系统,这些系统在任何时间点的环境都是“场景”,即物理对象和代理的配置。我们设计了一种特定领域的语言,即风景秀丽,用于描述随着时间的推移而在场景和代理商的行为上分布的场景。作为一种概率的编程语言,风景典礼允许将分布分配给场景的特征,并声明在场景上施加了硬和软的约束。我们利用了风景特定的域特异性语法提供的结构,开发了从产生的分布中进行采样的专业技术。最后,我们在案例研究中应用风景秀丽的卷积神经网络,旨在检测道路图像中的汽车,从而提高了其性能,超出了最先进的合成数据生成方法所实现的效果。

We propose a new probabilistic programming language for the design and analysis of cyber-physical systems, especially those based on machine learning. Specifically, we consider the problems of training a system to be robust to rare events, testing its performance under different conditions, and debugging failures. We show how a probabilistic programming language can help address these problems by specifying distributions encoding interesting types of inputs, then sampling these to generate specialized training and test data. More generally, such languages can be used to write environment models, an essential prerequisite to any formal analysis. In this paper, we focus on systems like autonomous cars and robots, whose environment at any point in time is a 'scene', a configuration of physical objects and agents. We design a domain-specific language, Scenic, for describing scenarios that are distributions over scenes and the behaviors of their agents over time. As a probabilistic programming language, Scenic allows assigning distributions to features of the scene, as well as declaratively imposing hard and soft constraints over the scene. We develop specialized techniques for sampling from the resulting distribution, taking advantage of the structure provided by Scenic's domain-specific syntax. Finally, we apply Scenic in a case study on a convolutional neural network designed to detect cars in road images, improving its performance beyond that achieved by state-of-the-art synthetic data generation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源