论文标题
无可挑剔的:通过评估更好的导线,用于共同治疗的集成建模管道
IMPECCABLE: Integrated Modeling PipelinE for COVID Cure by Assessing Better LEads
论文作者
论文摘要
目前在制药行业中使用的药物发现过程通常需要约10年和2-3亿美元才能提供一种新药。这既太贵又太慢了,尤其是在COVID-19-19大流行等紧急情况下。在硅化病中,需要改进以更好地选择铅化合物,这些铅化合物可以继续进入药物发现方案的后期,从而加速整个过程。没有一种方法学方法可以通过必要的效率达到必要的准确性。在这里,我们描述了多种算法创新,以克服规模上计算基础架构的基本限制,开发和部署,整合了多种人工智能和基于模拟的方法。性能的三个措施是:(i)吞吐量,单位时间的配体数量; (ii)科学性能,每单位时间采样的有效配体的数量和(iii)峰值性能,flop/s。此处概述的功能已在生产中使用了几个月,作为计算基础设施的主力,以支持美国 - 民族国家虚拟生物技术实验室的能力以及欧盟卓越计算生物医学中心的资源。
The drug discovery process currently employed in the pharmaceutical industry typically requires about 10 years and $2-3 billion to deliver one new drug. This is both too expensive and too slow, especially in emergencies like the COVID-19 pandemic. In silicomethodologies need to be improved to better select lead compounds that can proceed to later stages of the drug discovery protocol accelerating the entire process. No single methodological approach can achieve the necessary accuracy with required efficiency. Here we describe multiple algorithmic innovations to overcome this fundamental limitation, development and deployment of computational infrastructure at scale integrates multiple artificial intelligence and simulation-based approaches. Three measures of performance are:(i) throughput, the number of ligands per unit time; (ii) scientific performance, the number of effective ligands sampled per unit time and (iii) peak performance, in flop/s. The capabilities outlined here have been used in production for several months as the workhorse of the computational infrastructure to support the capabilities of the US-DOE National Virtual Biotechnology Laboratory in combination with resources from the EU Centre of Excellence in Computational Biomedicine.