论文标题

还原$ p $ - 亚种的特征与$ p $不同的表示

Representations of a reductive $p$-adic group in characteristic distinct from $p$

论文作者

Henniart, Guy, Vignéras, Marie-France

论文摘要

我们调查了不可约的cuspidal $ c $ - $ p $ p $ adic $ g $的代表,其特征与$ p $不同。当$ c $被代数关闭时,对于许多组$ g $,cuspidal $ c $ types $(j,λ)$的清单令人满意,有时是有限的cuspidal表示形式,并且通常是唯一的。我们验证这些列表是否验证AUT($ C $) - 稳定性,当不再假定代数关闭$ C $时,我们会产生类似的列表。我们的其他主要结果涉及超级优势。对于上述cuspidal $ c $ -c $ types $(j,λ)$的表示形式,该概念对于$ c $ c $λ$是有意义的,涉及有限的还原组。我们检查是否从$λ$引起的$ g $的不可约的cuspidal代表是超级优势,而只有$λ$是超级方面的。

We investigate the irreducible cuspidal $C$-representations of a reductive $p$-adic group $G$ over a field $C$ of characteristic different from $p$. When $C$ is algebraically closed, for many groups $G$, a list of cuspidal $C$-types $(J,λ)$ has been produced satisfying exhaustion, sometimes for a restricted kind of cuspidal representations, and often unicity. We verify that those lists verify Aut($C$)-stability and we produce similar lists when $C$ is no longer assumed algebraically closed. Our other main results concern supercuspidality. This notion makes sense for the representations $λ$ in the cuspidal $C$-types $(J,λ)$ as above, which involve finite reductive groups. We check that an irreducible cuspidal representation of $G$ induced from $λ$ is supercuspidal if and only $λ$ is supercuspidal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源