论文标题

chebyshev-tau光谱法,用于与海洋环境的正常水下声音传播模式

A Chebyshev-Tau spectral method for normal modes of underwater sound propagation with a layered marine environment

论文作者

Tu, Houwang, Wang, Yongxian, Lan, Qiang, Liu, Wei, Xiao, Wenbin, Ma, Shuqing

论文摘要

正常模式模型是解决水下声音传播问题的最流行方法之一。除其他方法外,有限差异方法被广泛用于经典的普通模式程序。在最近的许多研究中,光谱方法已用于离散化。通常,它比有限差法更准确。但是,光谱方法要求要解决的变量在空间中是连续的,并且传统的光谱方法对于分层的海洋环境无能为力。在本文中,将基于域分解的Chebyshev-Tau光谱方法应用于水下声学正常模式的构建。在这种方法中,借助Chebyshev多项式的正交基础,将微分方程投影到原始物理空间的光谱空间。因此形成了复杂的矩阵特征值 /特征向量问题,可以从中求解水平波数和模态函数的解。与经典程序相比,测试声场计算的有效性。分析和测试的结果表明,与经典有限差异方法相比,提出的Chebyshev-Tau光谱法具有高计算精度的优势。此外,就运行时间而言,我们的方法比Legendre-Galerkin光谱法更快。

The normal mode model is one of the most popular approaches for solving underwater sound propagation problems. Among other methods, the finite difference method is widely used in classic normal mode programs. In many recent studies, the spectral method has been used for discretization. It is generally more accurate than the finite difference method. However, the spectral method requires that the variables to be solved are continuous in space, and the traditional spectral method is powerless for a layered marine environment. A Chebyshev-Tau spectral method based on domain decomposition is applied to the construction of underwater acoustic normal modes in this paper. In this method, the differential equation is projected onto spectral space from the original physical space with the help of an orthogonal basis of Chebyshev polynomials. A complex matrix eigenvalue / eigenvector problem is thus formed, from which the solution of horizontal wavenumbers and modal functions can be solved. The validity of the acoustic field calculation is tested in comparison with classic programs. The results of analysis and tests show that compared with the classic finite difference method, the proposed Chebyshev-Tau spectral method has the advantage of high computational accuracy. In addition, in terms of running time, our method is faster than the Legendre-Galerkin spectral method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源