论文标题
黑洞二进制的重复合并:对GW190521的影响
Repeated mergers of black hole binaries: implications for GW190521
论文作者
论文摘要
引力波事件GW190521涉及两个黑洞的合并,分别为$ \ sim 85 \ text {m} _ \ odot $和$ \ sim 66 \ sim 66 \ text {m} _ \ odot $形成一个InterMediateMediate-Mass黑洞(IMBH)的质量$ \ sim 142 $ \ sim 142 \ sim 142 \ sim 142 \ sim 142 \ sim 142 \ cext $两种祖细胞都在标准恒星进化中解释,因为它们在上部黑洞质量间隙内。我们根据球状簇的核心中的多个合并为该IMBH提出了一个动力学形成途径。我们使用\ texttt {nbody6-gpu}对一组58个N体模拟的分析来确定此类方案。在我们的一个模拟中,我们观察到一个恒星的黑洞在6 Gyr之内经过七个二进制合并的链,获得了$ 97.8 \ text {m} _ \ odot $的最终质量。我们讨论导致最终IMBH产品的动力相互作用,以及该模拟中黑洞总体的演变。我们从统计学上探索引力后坐力对此类层次合并的生存能力的影响。从对所有58个模拟的分析中,我们观察到额外的较小链,暂时推断出通过层次合并形成的IMBH形成在中位数质量球形群集的寿命中,概率为$ 0.01 \ Lessim P \ Lessim P \ Lessim 0.1 $ 0.1 $,而无需重力合并。使用此磁性估算值,我们显示我们的结果与GW190521所隐含的速率广泛一致,假设祖细胞的重力后坐力的射出概率很低。我们讨论对未来重力波检测的含义,强调研究上质量间隙内BHS的这种形成途径的重要性,以此作为约束这种建模的一种手段。
The gravitational wave event GW190521 involves the merger of two black holes of $\sim 85\text{M}_\odot$ and $\sim 66\text{M}_\odot$ forming an intermediate-mass black hole (IMBH) of mass $\sim 142\text{M}_\odot$. Both progenitors are challenging to explain within standard stellar evolution as they are within the upper black-hole mass gap. We propose a dynamical formation pathway for this IMBH based on multiple mergers in the core of a globular cluster. We identify such scenarios from analysis of a set of 58 N-body simulations using \texttt{NBODY6-gpu}. In one of our simulations, we observe a stellar black hole undergoing a chain of seven binary mergers within 6 Gyr, attaining a final mass of $97.8\text{M}_\odot$. We discuss the dynamical interactions that lead to the final IMBH product, as well as the evolution of the black hole population in that simulation. We explore statistically the effects of gravitational recoil on the viability of such hierarchical mergers. From the analysis of all 58 simulations we observe additional smaller chains, tentatively inferring that an IMBH formation through hierarchical mergers is expected in the lifetime of a median mass globular cluster with probability $0.01 \lesssim p \lesssim 0.1$ without gravitational merger recoil. Using this order-of-magnitude estimate we show our results are broadly consistent with the rate implied by GW190521, assuming that gravitational recoil ejection of progenitors has a low probability. We discuss implications for future gravitational wave detections, emphasising the importance of studying such formation pathways for BHs within the upper mass gap as a means to constrain such modelling.