论文标题

在网络环境中对多代理系统的两方面可扩展合作优化

Two-Facet Scalable Cooperative Optimization of Multi-Agent Systems in The Networked Environment

论文作者

Huo, Xiang, Liu, Mingxi

论文摘要

合作优化了在大规模网络上连接的大量代理带来前所未有的可伸缩性挑战。本文围绕在耦合网络引起的约束和局部约束下优化耦合目标功能的问题。现有优化范例的可伸缩性受代理总体规模或网络维度的限制。作为根本性的改进,本文首次构建了两面可扩展的分散优化框架。为此,我们首先开发了一种系统性的网络降低技术,以实际上聚集代理并降低网络诱导的约束的维度,然后构成一种基于减少差异网络的新型缩减 - 偏二偶有亚速度(SPMDS)算法。提供了严格的最优性和提议的分散优化框架的收敛分析。基于SPMDS的优化框架无需代理到代理通信,并且代理簇不需要其他聚合器。与基准方法相比,通过模拟电动汽车充电控制问题和交通拥堵控制问题,证明了所提出方法的效率和功效。

Cooperatively optimizing a vast number of agents that are connected over a large-scale network brings unprecedented scalability challenges. This paper revolves around problems optimizing coupled objective functions under coupled network-induced constraints and local constraints. The scalability of existing optimization paradigms is limited by either the agent population size or the network dimension. As a radical improvement, this paper for the first time constructs a two-facet scalable decentralized optimization framework. To this end, we first develop a systemic network dimension reduction technique to virtually cluster the agents and lower the dimension of network-induced constraints, then constitute a novel shrunken-primal-multi-dual subgradient (SPMDS) algorithm based on the reduced-dimension network. Rigorous optimality and convergence analyses of the proposed decentralized optimization framework are provided. The SPMDS-based optimization framework is free of agent-to-agent communication and no additional aggregators are required for agent clusters. The efficiency and efficacy of the proposed approaches are demonstrated, in comparison with benchmark methods, through simulations of electric vehicle charging control problems and traffic congestion control problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源