论文标题

基于玩家的心理生理数据,在虚拟现实游戏中对模拟器疾病的实时检测

Real-Time Detection of Simulator Sickness in Virtual Reality Games Based on Players' Psychophysiological Data during Gameplay

论文作者

Wang, Jialin, Liang, Hai-Ning, Monteiro, Diego, Xu, Wenge, Chen, Hao, Chen, Qiwen

论文摘要

在过去的十年中,虚拟现实(VR)技术一直在增殖,尤其是在过去的几年中。但是,模拟器疾病(SS)仍然是其更广泛采用的重要问题。当前,检测SS的最常见方法是使用模拟器疾病问卷(SSQ)。 SSQ是一种主观的测量,并且不足以实时应用程序(例如VR游戏)。这项研究旨在调查如何使用机器学习技术在VR游戏游戏游戏中根据游戏中的角色和用户的生理数据来检测SS。为了实现这一目标,我们设计了一个实验,以三种类型的游戏收集此类数据。我们培训了一个长期的短期记忆神经网络,并具有数据集的眼睛跟踪和角色移动数据,以实时检测SS。我们的结果表明,在VR游戏中,我们的模型是实时检测SS的准确有效方法。

Virtual Reality (VR) technology has been proliferating in the last decade, especially in the last few years. However, Simulator Sickness (SS) still represents a significant problem for its wider adoption. Currently, the most common way to detect SS is using the Simulator Sickness Questionnaire (SSQ). SSQ is a subjective measurement and is inadequate for real-time applications such as VR games. This research aims to investigate how to use machine learning techniques to detect SS based on in-game characters' and users' physiological data during gameplay in VR games. To achieve this, we designed an experiment to collect such data with three types of games. We trained a Long Short-Term Memory neural network with the dataset eye-tracking and character movement data to detect SS in real-time. Our results indicate that, in VR games, our model is an accurate and efficient way to detect SS in real-time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源