论文标题

Toda方程和循环希格斯束的孤立奇异性

Isolated singularities of Toda equations and cyclic Higgs bundles

论文作者

Li, Qiongling, Mochizuki, Takuro

论文摘要

本文是我们关于TODA方程的研究的第二部分,以及与非紧凑型Riemann表面相对于$ r $ difterentials相关的循环希格斯捆绑包。我们将所有解决方案分类为围绕$ r $ differential的孤立奇异性的有限性,假设$ r $ diffentient是meromormorthic或具有某种类型的基本奇异性。结果,例如,如果$ r $ differential是多项式指数的有限总和,则我们将所有解决方案分类为$ {\ mathbb c} $。

This paper is the second part of our study on the Toda equations and the cyclic Higgs bundles associated to $r$-differentials over non-compact Riemann surfaces. We classify all the solutions up to boundedness around the isolated singularity of an $r$-differential under the assumption that the $r$-differential is meromorphic or has some type of essential singularity. As a result, for example, we classify all the solutions on ${\mathbb C}$ if the $r$-differential is a finite sum of the exponential of polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源