论文标题
ATTN-HYBRIDNET:通过注意融合提高混合特征的可区分性
Attn-HybridNet: Improving Discriminability of Hybrid Features with Attention Fusion
论文作者
论文摘要
主要组件分析网络(PCANET)是一个无监督的简约深网,将主组件用作其卷积层中的过滤器。尽管功能强大,但PCANET还是由基本操作组成的,例如主要组件和空间合并,这两个基本问题都受到了两个基本问题。首先,主要组件通过将信息转换为列向量(我们称为合并视图)来获得信息,从而一成体损失了数据中的空间信息。其次,在PCANET中使用的广义空间合并具有冗余性,并且也无法适应自然图像的空间统计。在这项研究中,我们首先提出了一个基于张量的基于张量的深网,称为张量分解网络(TFNET)。 TFNET从数据的空间结构中提取特征(我们称为小型视图)。然后,我们证明PCANET和TFNET获得的信息是独特的,不足的,但单独不足。这种现象需要开发提出的Hybridnet,这将信息发现与数据的两个视图集成在一起。为了增强混合功能的可区分性,我们提出了ATTN-Hybridnet,该杂交网络通过执行基于注意力的特征融合来减轻功能冗余。在多个现实世界中,我们提出的ATTN-HYBRIDNET的意义在多个现实世界数据集中证明了,其中用ATTN-Hybridnet获得的功能比其他流行的基线方法实现了更好的分类性能,这证明了该技术的有效性。
The principal component analysis network (PCANet) is an unsupervised parsimonious deep network, utilizing principal components as filters in its convolution layers. Albeit powerful, the PCANet consists of basic operations such as principal components and spatial pooling, which suffers from two fundamental problems. First, the principal components obtain information by transforming it to column vectors (which we call the amalgamated view), which incurs the loss of the spatial information in the data. Second, the generalized spatial pooling utilized in the PCANet induces feature redundancy and also fails to accommodate spatial statistics of natural images. In this research, we first propose a tensor-factorization based deep network called the Tensor Factorization Network (TFNet). The TFNet extracts features from the spatial structure of the data (which we call the minutiae view). We then show that the information obtained by the PCANet and the TFNet are distinctive and non-trivial but individually insufficient. This phenomenon necessitates the development of proposed HybridNet, which integrates the information discovery with the two views of the data. To enhance the discriminability of hybrid features, we propose Attn-HybridNet, which alleviates the feature redundancy by performing attention-based feature fusion. The significance of our proposed Attn-HybridNet is demonstrated on multiple real-world datasets where the features obtained with Attn-HybridNet achieves better classification performance over other popular baseline methods, demonstrating the effectiveness of the proposed technique.