论文标题
评估混合和增强现实:系统文献评论(2009-2019)
Evaluating Mixed and Augmented Reality: A Systematic Literature Review (2009-2019)
论文作者
论文摘要
我们对458篇论文进行了系统评价,这些论文报告了在Ismar,Chi,Ieee,IEEE VR和UIST中发表的混合现实和增强现实(MR/AR)的评估,并在11年的时间内(2009-2019)。我们的目标是为MR/AR方法的未来评估提供指导。为此,我们通过纸张类型(例如技术,设计研究),研究主题(例如跟踪,渲染),评估场景(例如算法,算法性能,用户绩效),认知方面(例如感知,情感,情感)以及进行评估的上下文(例如,进行评估的情况(例如,实验)(例如,例如,实验室VS.我们发现了类型,主题和场景的强烈耦合。我们观察两组:(a)以技术为中心的算法评估算法,这些算法着重于改善跟踪,显示,重建,渲染和校准,以及(b)以人为中心的研究,分析应用和设计的含义,人为因素,对感知,可用性,可用性,决策,情感,情感和注意力的影响。在458篇论文中,我们确定了248项用户研究,其中涉及5,761名参与者,其中只有1,619名被确定为女性。我们确定了43种用于分析10个认知方面的数据收集方法。我们发现了九种客观方法和八种支持定性分析的方法。在实验室环境中进行了大多数(216/248)的用户研究。通常(138/248),此类研究以静态方式涉及参与者。但是,我们还发现了一个公平的数字(30/248),其中包括移动方式的参与者。我们认为本文与学术界和行业有关,在介绍最新的艺术品并指导MR/AR评估结果的设计,进行和分析结果的步骤。
We present a systematic review of 458 papers that report on evaluations in mixed and augmented reality (MR/AR) published in ISMAR, CHI, IEEE VR, and UIST over a span of 11 years (2009-2019). Our goal is to provide guidance for future evaluations of MR/AR approaches. To this end, we characterize publications by paper type (e.g., technique, design study), research topic (e.g., tracking, rendering), evaluation scenario (e.g., algorithm performance, user performance), cognitive aspects (e.g., perception, emotion), and the context in which evaluations were conducted (e.g., lab vs. in-the-wild). We found a strong coupling of types, topics, and scenarios. We observe two groups: (a) technology-centric performance evaluations of algorithms that focus on improving tracking, displays, reconstruction, rendering, and calibration, and (b) human-centric studies that analyze implications of applications and design, human factors on perception, usability, decision making, emotion, and attention. Amongst the 458 papers, we identified 248 user studies that involved 5,761 participants in total, of whom only 1,619 were identified as female. We identified 43 data collection methods used to analyze 10 cognitive aspects. We found nine objective methods, and eight methods that support qualitative analysis. A majority (216/248) of user studies are conducted in a laboratory setting. Often (138/248), such studies involve participants in a static way. However, we also found a fair number (30/248) of in-the-wild studies that involve participants in a mobile fashion. We consider this paper to be relevant to academia and industry alike in presenting the state-of-the-art and guiding the steps to designing, conducting, and analyzing results of evaluations in MR/AR.