论文标题

近似培根 - 文化代码和全息图

Approximate Bacon-Shor Code and Holography

论文作者

Cao, ChunJun, Lackey, Brad

论文摘要

我们明确地构建了代码亚词法中的非平凡中心的一类全息量子误差校正代码。具体而言,我们使用培根 - 摩托代码和完美的张量来构建量规代码(或带有量规固定的稳定器代码),我们称之为全息混合代码。该代码接收局部的对数深度编码/解码电路,并且可以表示为全息张量网络,该网络满足Ryu-Takayanagi公式的类似物,并重现次区域二元性的特征。然后,我们通过“偏斜”代码子空间来构建全息混合代码的大致版本,其中偏斜的大小类似于全息图中重力常数的大小。这些近似混合代码不一定是稳定代码,但可以表示为稳定器代码的全息张量网络的叠加。对于此类结构,代表不同体积物质内容的不同逻辑状态可以在紧急几何形状上“反应”,类似于重力的关键特征。自由度的宽大程度的局部性依赖于子空间。从边界的“纠缠楔”和批量操作员重建的角度来看,这种子空间依赖性体现出来。确切的互补误差校正因某些自由边界程度的两部分而分解。但是,为特定子空间保留了有限的状态依赖形式。我们还构建了一个示例,其中连接的两点相关函数可以具有幂律衰减。再加上全息图的已知限制,一个弱反应的散装也迫使这些偏斜的张量网络模型到“大$ n $ limit”,在该模型中,它们是通过将大量$ n $ $ n $数量副本构建而构建的。

We explicitly construct a class of holographic quantum error correction codes with non-trivial centers in the code subalgebra. Specifically, we use the Bacon-Shor codes and perfect tensors to construct a gauge code (or a stabilizer code with gauge-fixing), which we call the holographic hybrid code. This code admits a local log-depth encoding/decoding circuit, and can be represented as a holographic tensor network which satisfies an analog of the Ryu-Takayanagi formula and reproduces features of the sub-region duality. We then construct approximate versions of the holographic hybrid codes by "skewing" the code subspace, where the size of skewing is analogous to the size of the gravitational constant in holography. These approximate hybrid codes are not necessarily stabilizer codes, but they can be expressed as the superposition of holographic tensor networks that are stabilizer codes. For such constructions, different logical states, representing different bulk matter content, can "back-react" on the emergent geometry, resembling a key feature of gravity. The locality of the bulk degrees of freedom becomes subspace-dependent and approximate. Such subspace-dependence is manifest from the point of view of the "entanglement wedge" and bulk operator reconstruction from the boundary. Exact complementary error correction breaks down for certain bipartition of the boundary degrees of freedom; however, a limited, state-dependent form is preserved for particular subspaces. We also construct an example where the connected two-point correlation functions can have a power-law decay. Coupled with known constraints from holography, a weakly back-reacting bulk also forces these skewed tensor network models to the "large $N$ limit" where they are built by concatenating a large $N$ number of copies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源