论文标题
Bayrel:多摩斯数据集成的贝叶斯关系学习
BayReL: Bayesian Relational Learning for Multi-omics Data Integration
论文作者
论文摘要
高通量分子分析技术已经产生了高维的多态数据,从而使人们能够以基因组量表对生活系统进行系统的了解。研究不同数据类型的分子相互作用有助于揭示不同类别分子的信号转导机制。在本文中,我们开发了一种新颖的贝叶斯表示学习方法,该方法渗透了多摩变数据类型之间的关系相互作用。我们的方法,用于多摩尼克数据集成的方法,利用了同一类的分子之间的先验已知关系,在每个相应的视图上以图为图建模,以学习特定于视图的潜在变量以及多目标图,以编码跨视图的相互作用。我们在几个现实世界数据集上的实验表明,与现有基线相比,在推断有意义的相互作用时,Bayrel的性能提高了。
High-throughput molecular profiling technologies have produced high-dimensional multi-omics data, enabling systematic understanding of living systems at the genome scale. Studying molecular interactions across different data types helps reveal signal transduction mechanisms across different classes of molecules. In this paper, we develop a novel Bayesian representation learning method that infers the relational interactions across multi-omics data types. Our method, Bayesian Relational Learning (BayReL) for multi-omics data integration, takes advantage of a priori known relationships among the same class of molecules, modeled as a graph at each corresponding view, to learn view-specific latent variables as well as a multi-partite graph that encodes the interactions across views. Our experiments on several real-world datasets demonstrate enhanced performance of BayReL in inferring meaningful interactions compared to existing baselines.