论文标题
含有曲率奇点的空间的半全球结构
Semi-global constructions of spacetimes containing curvature singularities
论文作者
论文摘要
我们构建了半全球$(1+3)$ - 尺寸洛伦兹的空间,满足Einstein真空方程,其中包含曲率奇异性,这些曲率奇异性一直传播到将来的无效无限。我们结构的特殊情况是半全球空间,其中包含两个冲动引力波的相互作用。我们构造的空间可以被视为局部空间的半全球类似物,其中包含由Luk构成的弱的无效奇异性,以及局部空间中包含Luk和Rodnianski构建的冲动引力波的相互作用。
We construct semi-global $(1+3)$-dimensional Lorentzian spacetimes satisfying the Einstein vacuum equations that contain curvature singularities that are propagated all the way up to future null infinity. Special cases of our constructions are semi-global spacetimes containing the interaction of two impulsive gravitational waves. The spacetimes that we construct can be considered as the semi-global analogues of the local spacetimes containing weak null singularities constructed by Luk, and of the local spacetimes containing the interaction of impulsive gravitational waves constructed by Luk and Rodnianski.