论文标题

含有曲率奇点的空间的半全球结构

Semi-global constructions of spacetimes containing curvature singularities

论文作者

Angelopoulos, Yannis

论文摘要

我们构建了半全球$(1+3)$ - 尺寸洛伦兹的空间,满足Einstein真空方程,其中包含曲率奇异性,这些曲率奇异性一直传播到将来的无效无限。我们结构的特殊情况是半全球空间,其中包含两个冲动引力波的相互作用。我们构造的空间可以被视为局部空间的半全球类似物,其中包含由Luk构成的弱的无效奇异性,以及局部空间中包含Luk和Rodnianski构建的冲动引力波的相互作用。

We construct semi-global $(1+3)$-dimensional Lorentzian spacetimes satisfying the Einstein vacuum equations that contain curvature singularities that are propagated all the way up to future null infinity. Special cases of our constructions are semi-global spacetimes containing the interaction of two impulsive gravitational waves. The spacetimes that we construct can be considered as the semi-global analogues of the local spacetimes containing weak null singularities constructed by Luk, and of the local spacetimes containing the interaction of impulsive gravitational waves constructed by Luk and Rodnianski.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源