论文标题
通过后门水印开源数据集保护
Open-sourced Dataset Protection via Backdoor Watermarking
论文作者
论文摘要
深度学习的快速发展受益于发布一些高质量开源数据集(例如$ $,Imagenet),这使研究人员可以轻松验证其算法的有效性。几乎所有现有的开源数据集都要求它们只能用于学术或教育目的而不是商业目的,而仍然没有好方法来保护它们。在本文中,我们提出了一个\ emph {基于后门嵌入的数据集水印}方法,以通过验证是否用于训练第三方模型来保护开源的图像分类数据集。具体而言,所提出的方法包含两个主要过程,包括\ emph {dataset WaterMarking}和\ emph {dataset验证}。我们采用基于古典中毒的后门攻击(例如$ $,badnets)来进行水印,即,通过在一些良性样本中添加某个触发器(例如$,$,$,例如$,$ $,$,例如$,$,$,$,$,$,$,$,$,$,$,$,$,当地补丁),并标有预定的目标类。基于提议的基于后门的水印,我们根据基于可疑的良性样品的可疑第三方模型及其相应水印样品($ $ $,即带有触发图像的$ $ $),使用假设测试指导方法进行数据集验证。进行了一些基准数据集的实验,这验证了所提出方法的有效性。
The rapid development of deep learning has benefited from the release of some high-quality open-sourced datasets ($e.g.$, ImageNet), which allows researchers to easily verify the effectiveness of their algorithms. Almost all existing open-sourced datasets require that they can only be adopted for academic or educational purposes rather than commercial purposes, whereas there is still no good way to protect them. In this paper, we propose a \emph{backdoor embedding based dataset watermarking} method to protect an open-sourced image-classification dataset by verifying whether it is used for training a third-party model. Specifically, the proposed method contains two main processes, including \emph{dataset watermarking} and \emph{dataset verification}. We adopt classical poisoning-based backdoor attacks ($e.g.$, BadNets) for dataset watermarking, ie, generating some poisoned samples by adding a certain trigger ($e.g.$, a local patch) onto some benign samples, labeled with a pre-defined target class. Based on the proposed backdoor-based watermarking, we use a hypothesis test guided method for dataset verification based on the posterior probability generated by the suspicious third-party model of the benign samples and their correspondingly watermarked samples ($i.e.$, images with trigger) on the target class. Experiments on some benchmark datasets are conducted, which verify the effectiveness of the proposed method.