论文标题

通过互动来表征洞察力的质量:案例研究

Characterizing the Quality of Insight by Interactions: A Case Study

论文作者

He, Chen, Micallef, Luana, He, Liye, Peddinti, Gopal, Aittokallio, Tero, Jacucci, Giulio

论文摘要

随着允许用户在视觉探索过程中发表评论的趋势,了解洞察力的质量变得越来越重要,但是很少有合格洞察力的方法。本文提出了一项案例研究,以调查通过执行的相互作用来表征见解质量的可能性。为此,我们设计了可视化工具中的洞察力生成的相互作用。 Medisn支持五种类型的交互:选择,连接,详细说明,探索和共享。我们通过允许14位参与者自由探索数据并产生见解来评估Medisn。然后,我们从它们的交互日志中提取了七个相互作用模式,并将模式与洞察质量的四个方面相关联。结果表明有可能通过互动来识别见解。除其他发现外,勘探行动可能导致意外见解。钻孔模式倾向于增加见解的域值。定性分析表明,使用域知识指导探索可以积极影响派生见解的领域价值。我们讨论了研究的含义,经验教训以及未来的研究机会。

Understanding the quality of insight has become increasingly important with the trend of allowing users to post comments during visual exploration, yet approaches for qualifying insight are rare. This paper presents a case study to investigate the possibility of characterizing the quality of insight via the interactions performed. To do this, we devised the interaction of a visualization tool-MediSyn-for insight generation. MediSyn supports five types of interactions: selecting, connecting, elaborating, exploring, and sharing. We evaluated MediSyn with 14 participants by allowing them to freely explore the data and generate insights. We then extracted seven interaction patterns from their interaction logs and correlated the patterns to four aspects of insight quality. The results show the possibility of qualifying insights via interactions. Among other findings, exploration actions can lead to unexpected insights; the drill-down pattern tends to increase the domain values of insights. A qualitative analysis shows that using domain knowledge to guide exploration can positively affect the domain value of derived insights. We discuss the study's implications, lessons learned, and future research opportunities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源