论文标题
关系级隐喻标识的上下文调制
Contextual Modulation for Relation-Level Metaphor Identification
论文作者
论文摘要
识别文本中的隐喻非常具有挑战性,需要理解基础比较。这种认知过程的自动化最近引起了广泛的关注。但是,大多数现有方法通过将任务视为单词分类或顺序标记,而无需显式建模隐喻组件之间的相互作用,将其集中在单词级别的识别上。另一方面,尽管现有关系级别的方法隐式地模拟了这种交互作用,但它们忽略了隐喻发生的上下文。在这项工作中,我们通过引入一种新型体系结构来解决这些局限性,以识别基于上下文调制的某些语法关系的关系级别的隐喻表达。在一种受视觉推理作品启发的方法中,我们的方法基于使用特征线性调制来调节候选表达式的深层上下文特征的神经网络计算。我们证明所提出的体系结构在基准数据集上实现了最新的结果。提出的方法是通用的,可以应用于其他文本分类问题,这些问题受益于上下文互动。
Identifying metaphors in text is very challenging and requires comprehending the underlying comparison. The automation of this cognitive process has gained wide attention lately. However, the majority of existing approaches concentrate on word-level identification by treating the task as either single-word classification or sequential labelling without explicitly modelling the interaction between the metaphor components. On the other hand, while existing relation-level approaches implicitly model this interaction, they ignore the context where the metaphor occurs. In this work, we address these limitations by introducing a novel architecture for identifying relation-level metaphoric expressions of certain grammatical relations based on contextual modulation. In a methodology inspired by works in visual reasoning, our approach is based on conditioning the neural network computation on the deep contextualised features of the candidate expressions using feature-wise linear modulation. We demonstrate that the proposed architecture achieves state-of-the-art results on benchmark datasets. The proposed methodology is generic and could be applied to other textual classification problems that benefit from contextual interaction.