论文标题

使用suppodular信息测量指标的统一框架,以通用,以查询为中心的隐私保存和更新摘要

A Unified Framework for Generic, Query-Focused, Privacy Preserving and Update Summarization using Submodular Information Measures

论文作者

Kaushal, Vishal, Kothawade, Suraj, Ramakrishnan, Ganesh, Bilmes, Jeff, Asnani, Himanshu, Iyer, Rishabh

论文摘要

我们将少量信息测量方法作为通用,以查询为中心,隐私敏感和更新摘要任务的丰富框架。尽管过去的工作通常对这些问题的处理方式有所不同({\ em,例如},但通常用于以通用和查询为重点的摘要),但分量信息测量方法使我们能够通过统一的方法研究这些问题。我们首先表明,在不知不觉中,以前的几种以查询为重点和更新的摘要技术使用了上述sissodular信息指标的各种实例,为这些模型的利益和自然性提供了证据。然后,我们仔细研究并证明所提出功能在不同设置中的建模功能,并在经验上验证我们在合成数据集和现有现有的现实世界图像收集数据集上的发现(通过将概念注释添加到每个图像中,可以使其适合此任务来扩展,并将公开发布。我们采用了最大利润框架来学习使用拟议的supporular信息测量实例化建立的混合模型,并证明了我们方法的有效性。尽管我们的实验是在图像摘要的上下文中,但我们的框架是通用的,并且可以轻松扩展到其他摘要设置(例如,视频或文档)。

We study submodular information measures as a rich framework for generic, query-focused, privacy sensitive, and update summarization tasks. While past work generally treats these problems differently ({\em e.g.}, different models are often used for generic and query-focused summarization), the submodular information measures allow us to study each of these problems via a unified approach. We first show that several previous query-focused and update summarization techniques have, unknowingly, used various instantiations of the aforesaid submodular information measures, providing evidence for the benefit and naturalness of these models. We then carefully study and demonstrate the modelling capabilities of the proposed functions in different settings and empirically verify our findings on both a synthetic dataset and an existing real-world image collection dataset (that has been extended by adding concept annotations to each image making it suitable for this task) and will be publicly released. We employ a max-margin framework to learn a mixture model built using the proposed instantiations of submodular information measures and demonstrate the effectiveness of our approach. While our experiments are in the context of image summarization, our framework is generic and can be easily extended to other summarization settings (e.g., videos or documents).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源