论文标题
Finsler磁盘中正交大地和弦的多重结果
A Multiplicity Result for Orthogonal Geodesic Chords in Finsler disks
论文作者
论文摘要
在本文中,我们研究了带有边界的歧管中的正交鳍大量和弦的存在和多样性问题,边界是同型n维磁盘。在合适的假设(比凸度弱的假设)下,我们证明,如果Finsler度量是可逆的,那么至少有N正交的Finsler Geodesic Chords几何差异。如果可逆性假设不成立,则至少有两个正交鳍鳍弦和弦具有不同的能量函数值。
In this paper, we study the existence and multiplicity problems for orthogonal Finsler geodesic chords in a manifold with boundary which is homeomorphic to a N-dimensional disk. Under a suitable assumption, which is weaker than convexity, we prove that, if the Finsler metric is reversible, then there are at least N orthogonal Finsler geodesic chords that are geometrically distinct. If the reversibility assumption does not hold, then there are at least two orthogonal Finsler geodesic chords with different values of the energy functional.