论文标题

旋转非圣对称陷阱中旋转Bose-Einstein冷凝水的涡流不存在

The Nonexistence of Vortices for Rotating Bose-Einstein Condensates in Non-Radially Symmetric Traps

论文作者

Guo, Yujin

论文摘要

我们考虑旋转Bose-Einstein旋转的基态,并在非谐波谐波陷阱中具有有吸引力的相互作用$ v(x)= x_1^2+λ^2x_2^2 $,其中$ 0<λ\ not = 1 $ and $ x =(x_1,x_1,x_2)\ in R^2 $。 For any fixed rotational velocity $0\le Ω<Ω^*:=2\min \{1, Λ\}$, it is known that ground states exist if and only if $ a<a^*$ for some critical constant $0<a^*<\infty$, where $a>0$ denotes the product for the number of particles times the absolute value of the scattering length.我们将基础状态的渐近扩展分析为$ a \近a^*$,它显示了$ω$对基础状态的可见效果。作为副产品,我们进一步证明了基础状态在区域$ r(a)中没有任何涡流:= \ {x \ in r^2:\,| \,| x | \ le c(a^* - a^* - a)^{ - \ frac {1} {1} {12}}}}}}}}}} \} $ as $ a \ a \ a \ a \ a \ a \ a \ a \ a \ a is a^a^a^*$ c $ c> $ 0 <a <a^*$。

We consider ground states of rotating Bose-Einstein condensates with attractive interactions in non-radially harmonic traps $V(x)=x_1^2+Λ^2x_2^2 $, where $0<Λ\not =1$ and $x=(x_1, x_2)\in R^2$. For any fixed rotational velocity $0\le Ω<Ω^*:=2\min \{1, Λ\}$, it is known that ground states exist if and only if $ a<a^*$ for some critical constant $0<a^*<\infty$, where $a>0$ denotes the product for the number of particles times the absolute value of the scattering length. We analyze the asymptotic expansions of ground states as $a\nearrow a^*$, which display the visible effect of $Ω$ on ground states. As a byproduct, we further prove that ground states do not have any vortex in the region $R(a):=\{x\in R^2:\,|x|\le C (a^*-a)^{-\frac{1}{12}}\}$ as $a\nearrow a^*$ for some constant $C>0$, which is independent of $0<a<a^*$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源