论文标题
异质靶标的强大有限混合回归
Robust Finite Mixture Regression for Heterogeneous Targets
论文作者
论文摘要
有限混合回归(FMR)是指从训练数据集中学习多个回归模型的混合建模方案。他们每个人都负责子集。 FMR是处理样品异质性的有效方案,其中单个回归模型不足以捕获所观察到的样品的条件分布的复杂性。在本文中,我们提出了一个FMR模型,即1)找到样品簇,并共同模拟多个不完整的混合型目标,2)2)在任务和群集组件之间实现共享的特征选择,以及3)检测任务之间的异常任务或群集结构,并在任务之间进行群集结构,并适用于远比样品。在高维学习框架下,我们为模型提供非反应性甲骨文性能界限。对合成数据集和现实数据集进行了评估所提出的模型。结果表明,我们的模型可以实现最先进的性能。
Finite Mixture Regression (FMR) refers to the mixture modeling scheme which learns multiple regression models from the training data set. Each of them is in charge of a subset. FMR is an effective scheme for handling sample heterogeneity, where a single regression model is not enough for capturing the complexities of the conditional distribution of the observed samples given the features. In this paper, we propose an FMR model that 1) finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously, 2) achieves shared feature selection among tasks and cluster components, and 3) detects anomaly tasks or clustered structure among tasks, and accommodates outlier samples. We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework. The proposed model is evaluated on both synthetic and real-world data sets. The results show that our model can achieve state-of-the-art performance.