论文标题
次 - 里曼尼亚语歧管上具有恒定符号的典型连接
Canonical connections on sub-Riemannian manifolds with constant symbol
论文作者
论文摘要
作为解决亚riemannian几何形状中的等效问题的工具,我们引入了分级和兼容的仿射连接的规范选择,该连接可在任何持续符号的子里曼尼亚歧管上都可以使用。我们完全计算了这些结构,以用于恒定符号的接触歧管,包括未定义田中 - 温布 - 坦诺连接的情况。我们还对次曼尼亚人(2,3,5) - manifolds给出了原始的内在分级,并使用它来介绍这种情况下的第一个平坦定理。
As a tool to address the equivalence problem in sub-Riemannian geometry, we introduce a canonical choice of grading and compatible affine connection, available on any sub-Riemannian manifold with constant symbol. We completely compute these structures for contact manifolds of constant symbol, including the cases where the connections of Tanaka-Webster-Tanno are not defined. We also give an original intrinsic grading on sub-Riemannian (2,3,5)-manifolds, and use this to present the first flatness theorem in this setting.