论文标题
血浆模拟中的自动粒子轨迹分类
Automatic Particle Trajectory Classification in Plasma Simulations
论文作者
论文摘要
血浆流的数值模拟对于促进我们对融合设备,空间和天体物理系统中全局等离子体动态的显微过程的理解至关重要。识别和分类粒子轨迹使我们能够确定特定的持续加速机制,从而阐明基本的等离子体过程。 我们的总体目标是提供一个一般的工作流程,以探索粒子轨迹空间,并以无监督的方式自动从等离子体模拟中分类粒子轨迹。我们将预处理技术(例如快速傅立叶变换(FFT))与机器学习方法相结合,例如主成分分析(PCA),K-Means群集聚类算法和Silhouette分析。我们通过在磁重新连接问题期间对电子轨迹进行分类来证明我们的工作流程。我们的方法成功地从先前的文献中恢复了现有结果,而没有对基础系统的先验知识。 我们的工作流程可以应用于分析不同现象中的粒子轨迹,从磁重新连接,冲击到磁层流。工作流不依赖任何物理模型,并且可以识别以前未检测到的粒子轨迹和加速机制。
Numerical simulations of plasma flows are crucial for advancing our understanding of microscopic processes that drive the global plasma dynamics in fusion devices, space, and astrophysical systems. Identifying and classifying particle trajectories allows us to determine specific on-going acceleration mechanisms, shedding light on essential plasma processes. Our overall goal is to provide a general workflow for exploring particle trajectory space and automatically classifying particle trajectories from plasma simulations in an unsupervised manner. We combine pre-processing techniques, such as Fast Fourier Transform (FFT), with Machine Learning methods, such as Principal Component Analysis (PCA), k-means clustering algorithms, and silhouette analysis. We demonstrate our workflow by classifying electron trajectories during magnetic reconnection problem. Our method successfully recovers existing results from previous literature without a priori knowledge of the underlying system. Our workflow can be applied to analyzing particle trajectories in different phenomena, from magnetic reconnection, shocks to magnetospheric flows. The workflow has no dependence on any physics model and can identify particle trajectories and acceleration mechanisms that were not detected before.