论文标题

非平稳随机全局优化算法

Non-Stationary Stochastic Global Optimization Algorithms

论文作者

Gomez, Jonatan, Rivera, Carlos

论文摘要

戈麦斯(Gomez)提出了一种表征随机全局优化算法的形式和系统的方法。使用它,Gomez用固定的下一步构造随机方法(即定义为固定马尔可夫过程的算法)形式化算法。这些是标准版本的爬山,平行爬山,世代遗传,稳态遗传和差异进化算法的情况。本文继续采用这种系统的形式方法。首先,我们将足够的条件从静止的马尔可夫工艺概括到了足够的条件。其次,我们为一些选择方案开发了马尔可夫内核。最后,我们使用系统的形式方法对模拟解放和进化形式进行形式化。

Gomez proposes a formal and systematic approach for characterizing stochastic global optimization algorithms. Using it, Gomez formalizes algorithms with a fixed next-population stochastic method, i.e., algorithms defined as stationary Markov processes. These are the cases of standard versions of hill-climbing, parallel hill-climbing, generational genetic, steady-state genetic, and differential evolution algorithms. This paper continues such a systematic formal approach. First, we generalize the sufficient conditions convergence lemma from stationary to non-stationary Markov processes. Second, we develop Markov kernels for some selection schemes. Finally, we formalize both simulated-annealing and evolutionary-strategies using the systematic formal approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源