论文标题

基于马尔可夫的递归边界结构学习方法

A Recursive Markov Boundary-Based Approach to Causal Structure Learning

论文作者

Mokhtarian, Ehsan, Akbari, Sina, Ghassami, AmirEmad, Kiyavash, Negar

论文摘要

基于约束的方法是因果结构学习的主要方法之一,由于它们渐近地保证找到与系统的因果图等效的结构,因此特别有价值。另一方面,它们可能需要在系统的变量数量中进行指数级的条件独立性(CI)测试。在本文中,我们提出了一种基于递归的约束方法,用于因果结构学习,该方法与现有文献相比大大减少了所需数量的CI测试。提出的方法的想法是使用马尔可夫边界信息来识别可以从变量集中删除的特定变量,而不会影响其他变量之间的统计依赖性。确定了这样的变量后,我们发现了其邻域,从一组变量中删除该变量,并递归地了解其余变量的因果结构。我们进一步提供了任何基于约束方法所需的CI测试数量的下限。将这种下限与我们可实现的界限进行比较,证明了所提出的方法的效率。我们的实验结果表明,所提出的算法在合成和现实世界结构上的最先进。

Constraint-based methods are one of the main approaches for causal structure learning that are particularly valued as they are asymptotically guaranteed to find a structure that is Markov equivalent to the causal graph of the system. On the other hand, they may require an exponentially large number of conditional independence (CI) tests in the number of variables of the system. In this paper, we propose a novel recursive constraint-based method for causal structure learning that significantly reduces the required number of CI tests compared to the existing literature. The idea of the proposed approach is to use Markov boundary information to identify a specific variable that can be removed from the set of variables without affecting the statistical dependencies among the other variables. Having identified such a variable, we discover its neighborhood, remove that variable from the set of variables, and recursively learn the causal structure over the remaining variables. We further provide a lower bound on the number of CI tests required by any constraint-based method. Comparing this lower bound to our achievable bound demonstrates the efficiency of the proposed approach. Our experimental results show that the proposed algorithm outperforms state-of-the-art both on synthetic and real-world structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源