论文标题
用于编码,测试和验证应用的本地算法的结构定理
A Structural Theorem for Local Algorithms with Applications to Coding, Testing, and Verification
论文作者
论文摘要
我们证明了广泛的本地算法家族的一般结构定理,其中包括属性测试人员,本地解码器和接近度PCP。也就是说,我们表明,在Goldreich和Ron(toct 2016)的定义之后,我们表明每种制作$ q $自适应查询算法的结构并满足具有$ n^{1- 1/o(q^2 \ log^2 q)$样品复杂性的基于样本的算法(q^2 \ log^2 q)} $(toct 2016)的基于样本的算法。我们证明这种转换几乎是最佳的。我们的定理还承认了一个构建隐私算法的计划。使用我们的结构定理提供的统一观点,我们获得有关各种局部算法的结果,包括以下内容。 - 我们为放松的本地可解码代码增强了最新的下限,从而获得了对查询复杂性的依赖性的指数改善;这解决了古尔(Gur)和拉奇什(Lachish)提出的一个空旷的问题(Sicomp 2021)。 - 我们表明,任何(恒定)可测试的属性都允许具有均方根样品复杂性的基于样本的测试仪;这解决了Fischer,Lachish和Vasudev(Focs 2015)的作品中的问题,将其主要结果扩展到适应性测试人员。 - 我们证明,邻近和测试仪证明之间的已知分离本质上是最大的。这解决了Gur and Rothblum(ECCC 2013,计算复杂性2018)剩下的问题,该问题涉及计算时间委托。 我们的技术强烈依赖于放松的向日葵引理和Hajnal-szemerédi定理。
We prove a general structural theorem for a wide family of local algorithms, which includes property testers, local decoders, and PCPs of proximity. Namely, we show that the structure of every algorithm that makes $q$ adaptive queries and satisfies a natural robustness condition admits a sample-based algorithm with $n^{1- 1/O(q^2 \log^2 q)}$ sample complexity, following the definition of Goldreich and Ron (TOCT 2016). We prove that this transformation is nearly optimal. Our theorem also admits a scheme for constructing privacy-preserving local algorithms. Using the unified view that our structural theorem provides, we obtain results regarding various types of local algorithms, including the following. - We strengthen the state-of-the-art lower bound for relaxed locally decodable codes, obtaining an exponential improvement on the dependency in query complexity; this resolves an open problem raised by Gur and Lachish (SICOMP 2021). - We show that any (constant-query) testable property admits a sample-based tester with sublinear sample complexity; this resolves a problem left open in a work of Fischer, Lachish, and Vasudev (FOCS 2015) by extending their main result to adaptive testers. - We prove that the known separation between proofs of proximity and testers is essentially maximal; this resolves a problem left open by Gur and Rothblum (ECCC 2013, Computational Complexity 2018) regarding sublinear-time delegation of computation. Our techniques strongly rely on relaxed sunflower lemmas and the Hajnal-Szemerédi theorem.