论文标题
基于MPC的坚固步行并保证可行性
Robust walking based on MPC with viability guarantees
论文作者
论文摘要
模型预测控制(MPC)在控制复杂系统(例如腿部机器人)方面已显示出巨大的成功。但是,关闭循环时,不再保证在每个控制周期解决有限地平线最佳控制问题(OCP)的性能和可行性。这是由于模型差异,低级控制器,不确定性和传感器噪声的影响。为了解决这些问题,我们提出了一种用于腿部运动中使用的标准MPC方法的修改版本,具有可行性(弱向前不变性)保证。在这种方法中,我们建议使用在每个控制周期求解的OCP中投影到可行性内核的测量状态,而不是在问题上添加(保守的)终端约束。此外,我们使用过去的实验数据来找到最佳的成本权重,从而衡量性能,约束满意度鲁棒性或稳定性(不变性)的组合。这些可解释的成本衡量了稳健性和绩效之间的权衡。为此,我们使用贝叶斯优化(BO)进行系统设计实验,以有助于收集数据以学习成本函数,从而导致稳健的性能。我们的仿真结果具有不同的逼真的干扰(即外部推动,未建模的执行器动力学和计算延迟),显示了我们为人形机器人创建强大控制器的方法的有效性。
Model predictive control (MPC) has shown great success for controlling complex systems such as legged robots. However, when closing the loop, the performance and feasibility of the finite horizon optimal control problem (OCP) solved at each control cycle is not guaranteed anymore. This is due to model discrepancies, the effect of low-level controllers, uncertainties and sensor noise. To address these issues, we propose a modified version of a standard MPC approach used in legged locomotion with viability (weak forward invariance) guarantees. In this approach, instead of adding a (conservative) terminal constraint to the problem, we propose to use the measured state projected to the viability kernel in the OCP solved at each control cycle. Moreover, we use past experimental data to find the best cost weights, which measure a combination of performance, constraint satisfaction robustness, or stability (invariance). These interpretable costs measure the trade off between robustness and performance. For this purpose, we use Bayesian optimization (BO) to systematically design experiments that help efficiently collect data to learn a cost function leading to robust performance. Our simulation results with different realistic disturbances (i.e. external pushes, unmodeled actuator dynamics and computational delay) show the effectiveness of our approach to create robust controllers for humanoid robots.