论文标题
半竞争风险数据的因果推断
Causal inference for semi-competing risks data
论文作者
论文摘要
对于事件时间数据的新出现的挑战是研究半竞争风险,即何时感兴趣的两个事件时间:非末端事件时间(例如,疾病诊断时的年龄)和最终事件时间(例如,死亡年龄)。仅在非末端事件之前或之后发生的终端事件之前观察到非末端事件。研究治疗或干预对双重事件时间的影响很复杂,因为对于某些单位,非末端事件可能发生在一个治疗值下,而不是在另一个治疗值下发生。直到最近,现有的方法(例如,幸存者的平均因果效应)通常忽略了这两个结果的事故时间。最新的研究集中在贝叶斯方法下时期种群中的主要层面效应。在本文中,我们根据人群的单个分层提出了替代性非时变估计。我们提出了一个新的假设,利用数据的事故性质,该假设比经常掠过的单调性假设弱。我们根据部分可识别性得出结果,建议一种灵敏度分析方法,并提供可能完全识别的条件。最后,我们提出了右芯数据的非参数和半参数估计方法。
An emerging challenge for time-to-event data is studying semi-competing risks, namely when two event times are of interest: a non-terminal event time (e.g. age at disease diagnosis), and a terminal event time (e.g. age at death). The non-terminal event is observed only if it precedes the terminal event, which may occur before or after the non-terminal event. Studying treatment or intervention effects on the dual event times is complicated because for some units, the non-terminal event may occur under one treatment value but not under the other. Until recently, existing approaches (e.g., the survivor average causal effect) generally disregarded the time-to-event nature of both outcomes. More recent research focused on principal strata effects within time-varying populations under Bayesian approaches. In this paper, we propose alternative non time-varying estimands, based on a single stratification of the population. We present a novel assumption utilizing the time-to-event nature of the data, which is weaker than the often-invoked monotonicity assumption. We derive results on partial identifiability, suggest a sensitivity analysis approach, and give conditions under which full identification is possible. Finally, we present non-parametric and semi-parametric estimation methods for right-censored data.