论文标题

关于数值重归其化组的截断误差

On the Truncation Error of Numerical Renormalization Group

论文作者

Yang, Ke, Tong, Ning-Hua

论文摘要

使用最近开发的精确数值重归其化组(NRG)方法,我们分析了局部磁敏感性的NRG截断误差$Δχ$,以及Spin-Boson模型(SBM)的自由能的$ΔF$。我们发现,对于高于交叉温度$ t_ {cr} $的温度,随着保存状态的数量$ m $的增加,这两个错误都具有振荡,quasi osisi $ \ ln {m}/\ ln {n_b} $ and prespcemence and insevision andevelase andevelase hevelosees hisweasese an $ε_{tr} =λ^{ - \ ln {m}/\ ln {n_b}} $($ n_b $是每个浴室使用的玻色子状态的数量)。对于$ t \ ll t_ {cr} $,它们降低的速度比电源定律慢。我们提取$ t_ {cr} = t^{\ ast}ε_{tr} $,其中$ t^{\ ast} $是SBM的解密和关键固定点之间的交叉能量尺度。同一规则适用于$Δχ$和$ΔF$从全密度矩阵NRG方法中计算出来的,预计将对一般杂质模型保存,从而可以准确地清除高温下静态数量的NRG截断误差。

Using the recently developed exact numerical renormalization group (NRG) method, we analyse the NRG truncation errors $δχ$ of the local magnetic susceptibility and $δF$ of the free energy for the spin-boson model (SBM). We find that for temperatures higher than a crossover temperature $T_{cr}$, as the number of kept states $M$ increases, both errors have oscillations with quasi period $\ln{M}/\ln{N_b}$ and the envelopes decrease as $ε_{tr}=Λ^{-\ln{M}/\ln{N_b}}$ ($N_b$ is the number of boson states used for each bath site). For $T \ll T_{cr}$, they decrease slower than the power law. We extract that $T_{cr} = T^{\ast} ε_{tr}$, with $T^{\ast}$ being the crossover energy scale between the declocalized and the critical fixed points of SBM. The same rule applies to $δχ$ and $δF$ calculated from the full density matrix NRG method and is expected to hold for general impurity models, allowing accurate removal of NRG truncation errors in static quantities at high temperatures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源