论文标题

$ f $ - 理想的Cohen-Macaulay物业

The Cohen-Macaulay Property of $f$-ideals

论文作者

Liu, A-Ming, Guo, Jin, Wu, Tongsuo

论文摘要

对于正整数$ d <n $,让$ [n] _d = \ {a \ in 2^{[n]} \ mid | a | = d \} $其中$ [n] =:\ {1,2,\ ldots,n \} $。对于纯$ f $ -simplicial复合物$δ$,以便$ {\ rm dim}(δ)= {\ rm dim}(Δ^c)$和$ \ nathcal {f}(δ)\ cap \ cap \ cap \ nathcal {f}(f}(δ^c)(δ^c)只有当它具有线性分辨率时。对于$ d $二维纯$ f $ -simplicial complex $δ$,以至于$δ=:\ langle f \ f \ mid f \ in [n] _d \ smallSetMinus \ smallclcal \ mathcal f(Δ)\ rangle $ rangle $是$ f $ f $ -simplicial complect and $ simplicial complect,我们是$ i的$ i(IS $ i i i是$ i(IS)。 $ i(δ')$具有线性分辨率。

For positive integers $d<n$, let $[n]_d=\{A\in 2^{[n]}\mid |A|=d\}$ where $[n]=:\{1,2,\ldots, n\}$. For a pure $f$-simplicial complex $Δ$ such that ${\rm dim}(Δ)={\rm dim}(Δ^c)$ and $\mathcal{F}(Δ)\cap \mathcal{F}(Δ^c)=\emptyset$, we prove that the facet ideal $I(Δ)$ is Cohen-Macaulay if and only if it has linear resolution. For a $d$-dimensional pure $f$-simplicial complex $Δ$ such that $Δ'=:\langle F\mid F\in [n]_d\smallsetminus \mathcal F(Δ)\rangle$ is an $f$-simplicial complex, we prove that $I(Δ^c)$ is Cohen-Macaulay if and only if $I(Δ')$ has linear resolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源