论文标题
设置预测而不将结构作为条件密度估计
Set Prediction without Imposing Structure as Conditional Density Estimation
论文作者
论文摘要
集体预测是关于学习预测具有未知相互关系的无序变量的集合。训练以设定损失的训练模型在集合上施加了度量空间的结构。我们专注于随机和未定义的情况,在这种情况下,错误选择的损失函数会导致难以置信的预测。示例任务包括有条件的点云重建和预测分子的未来状态。在本文中,我们通过将学习视为条件密度估计,提出了通过设定损失训练的替代方法。我们的学习框架符合基于能量的深层模型,并通过梯度指导采样近似棘手的可能性。此外,我们提出了一种随机增强的预测算法,该算法可以实现多个预测,以反映目标集合中的可能变化。我们在各种数据集上经验证明了学习多模式密度并产生不同合理预测的能力。我们的方法与先前的标准基准测试模型具有竞争力。更重要的是,它将可寻址任务的家族范围扩展到了有明确预测的任务之外。
Set prediction is about learning to predict a collection of unordered variables with unknown interrelations. Training such models with set losses imposes the structure of a metric space over sets. We focus on stochastic and underdefined cases, where an incorrectly chosen loss function leads to implausible predictions. Example tasks include conditional point-cloud reconstruction and predicting future states of molecules. In this paper, we propose an alternative to training via set losses by viewing learning as conditional density estimation. Our learning framework fits deep energy-based models and approximates the intractable likelihood with gradient-guided sampling. Furthermore, we propose a stochastically augmented prediction algorithm that enables multiple predictions, reflecting the possible variations in the target set. We empirically demonstrate on a variety of datasets the capability to learn multi-modal densities and produce different plausible predictions. Our approach is competitive with previous set prediction models on standard benchmarks. More importantly, it extends the family of addressable tasks beyond those that have unambiguous predictions.