论文标题

水晶可以是玻色系统的基态吗?

Can a crystal be the ground state of a Bose system?

论文作者

Tomchenko, Maksim D.

论文摘要

通常假定$ t = 0 $的玻色晶体对应于玻色系统的真实基态,即,该状态是非分类的,并且由没有节点的波函数描述。通过对称分析,我们表明,任何密度的BOSE系统的基态应对应于液体或气体,但不能与晶体相对应。要点是,无旋转玻色子系统的任何各向异性状态都是退化的。我们证明了无限三维(3D)系统和有限的球形3D系统的证明。人们可以期望任何形式的有限系统也是如此。因此,各向异性国家不能是真正的基础状态。因此,零温度的天然3D晶体应对应于玻色系统的激发态。对于零边界条件,提出了零温度3D Bose Crystal的Wave函数$ψ^{C} _ {0} $。显然,这样的$ψ^{c} _ {0} $对应于局部最小能量(绝对最小值对应于液体)。这些特性产生了超氟液体H $ _ {2} $,NE,AR和其他惰性元素的可能性。我们提出了几种获取它们的可能实验方法。

It is usually assumed that the Bose crystal at $T=0$ corresponds to the genuine ground state of a Bose system, i.e., this state is non-degenerate and is described by the wave function without nodes. By means of symmetry analysis we show that the ground state of a Bose system of any density should correspond to a liquid or gas, but not to a crystal. The main point is that any anisotropic state of a system of spinless bosons is degenerate. We prove this for an infinite three-dimensional (3D) system and a finite ball-shaped 3D system. One can expect that it is true also for a finite system of any form. Therefore, the anisotropic state cannot be the genuine ground state. Hence, a zero-temperature natural 3D crystal should correspond to an excited state of a Bose system. The wave function $Ψ^{c}_{0}$ of a zero-temperature 3D Bose crystal is proposed for zero boundary conditions. Apparently, such $Ψ^{c}_{0}$ corresponds to a local minimum of energy (absolute minimum corresponds to a liquid). Those properties yield the possibility of existence of superfluid liquid H$_{2}$, Ne, Ar, and other inert elements. We propose several possible experimental ways of obtaining them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源