论文标题

霉菌:有效药物的交互式设计,深度学习

MolDesigner: Interactive Design of Efficacious Drugs with Deep Learning

论文作者

Huang, Kexin, Fu, Tianfan, Khan, Dawood, Abid, Ali, Abdalla, Ali, Abid, Abubakar, Glass, Lucas M., Zitnik, Marinka, Xiao, Cao, Sun, Jimeng

论文摘要

药物的功效取决于其与治疗靶标和药代动力学的结合亲和力。深度学习(DL)在预测药物疗效方面表现出了显着的进步。我们开发了霉菌签名人,这是一种人类的网络用户界面(UI),以帮助药物开发人员利用DL预测来设计更有效的药物。开发人员可以在界面中绘制药物分子。在后端,超过17个最先进的DL模型会对对药物有效性至关重要的重要指数产生预测。基于这些预测,药物开发人员可以编辑药物分子并重申到满意度。霉菌签名人可以实时做出预测,延迟少于一秒钟。

The efficacy of a drug depends on its binding affinity to the therapeutic target and pharmacokinetics. Deep learning (DL) has demonstrated remarkable progress in predicting drug efficacy. We develop MolDesigner, a human-in-the-loop web user-interface (UI), to assist drug developers leverage DL predictions to design more effective drugs. A developer can draw a drug molecule in the interface. In the backend, more than 17 state-of-the-art DL models generate predictions on important indices that are crucial for a drug's efficacy. Based on these predictions, drug developers can edit the drug molecule and reiterate until satisfaction. MolDesigner can make predictions in real-time with a latency of less than a second.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源