论文标题
关于mod $ p $未经塑造的品种,具有普遍琐碎的零循环群
On the mod $p$ unramified cohomology of varieties having universally trivial Chow group of zero-cycles
论文作者
论文摘要
Auel-Bigazzi-Böhning-Graf von Botermer证明,如果合理的光滑品种$ x $在field $ k $的特征$ p> 0 $上具有普遍的琐碎的$ 0 $ 0 $ -CYCLES,那么$ x $的同谋Brauer Group of $ x $也是普遍的。在本文中,我们将他们的论点推广到任意的未经塑造的mod $ p $ p $étale动机共同体学小组。我们还看到,可以通过使用Suslin同源性以及未受到的共同体学组的某个驯服亚组来删除对品种$ x $的合适性假设。
Auel-Bigazzi-Böhning-Graf von Bothmer proved that if a proper smooth variety $X$ over a field $k$ of characteristic $p>0$ has universally trivial Chow group of $0$-cycles, the cohomological Brauer group of $X$ is universally trivial as well. In this paper, we generalize their argument to arbitrary unramified mod $p$ étale motivic cohomology groups. We also see that the properness assumption on the variety $X$ can be dropped off by using the Suslin homology together with a certain tame subgroup of the unramified cohomology group.