论文标题

textSettr:很少弹出的文本样式提取和可调的目标重新安装

TextSETTR: Few-Shot Text Style Extraction and Tunable Targeted Restyling

论文作者

Riley, Parker, Constant, Noah, Guo, Mandy, Kumar, Girish, Uthus, David, Parekh, Zarana

论文摘要

我们为文本样式转移问题提供了一种新颖的方法。与需要样式标记的培训数据的以前的方法不同,我们的方法通过依靠相邻句子之间的样式中的隐式连接来利用易于获取的无标记的文本,并且仅在推理时使用标记的数据。我们适应了T5(Raffel等,2020年),这是一种强烈的文本对文本模型,可以从文本中提取样式向量,并使用它来调节解码器以执行样式转移。随着我们的无标签培训导致了编码许多样式的样式向量空间,我们将转移转移为“针对性的重新装置”矢量操作,这些矢量操作调整了输入的特定属性,同时保留其他属性。我们证明,与对情感转移竞争激烈的模型进行了无标记的亚马逊评论培训,即使与对标签数据进行了充分培训的模型相比,也具有竞争力。此外,将我们的新方法应用于各种未标记的Web文本语料库,导致了一个模型,能够沿多个风格的多个维度(方言,情感,形式,礼貌,情感,情感)转移,尽管没有额外的培训,并且仅在推理时使用了少数示例。

We present a novel approach to the problem of text style transfer. Unlike previous approaches requiring style-labeled training data, our method makes use of readily-available unlabeled text by relying on the implicit connection in style between adjacent sentences, and uses labeled data only at inference time. We adapt T5 (Raffel et al., 2020), a strong pretrained text-to-text model, to extract a style vector from text and use it to condition the decoder to perform style transfer. As our label-free training results in a style vector space encoding many facets of style, we recast transfers as "targeted restyling" vector operations that adjust specific attributes of the input while preserving others. We demonstrate that training on unlabeled Amazon reviews data results in a model that is competitive on sentiment transfer, even compared to models trained fully on labeled data. Furthermore, applying our novel method to a diverse corpus of unlabeled web text results in a single model capable of transferring along multiple dimensions of style (dialect, emotiveness, formality, politeness, sentiment) despite no additional training and using only a handful of exemplars at inference time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源