论文标题

在平面图的大小上,呈阳性lin-lu-yau ricci曲率

On the size of planar graphs with positive Lin-Lu-Yau Ricci curvature

论文作者

Lu, Linyuan, Wang, Zhiyu

论文摘要

我们表明,如果具有至少$ 3 $的平面图$ g $在每个边缘的lin-lu-yau ricci曲率上,则$δ(g)\ leq 17 $,这意味着$ g $是有限的。这是Devos和Mohar [{\ em Trans的结果的类似物。阿米尔。数学。 Soc。,2007}]关于平面图的大小,具有正相曲率。

We show that if a planar graph $G$ with minimum degree at least $3$ has positive Lin-Lu-Yau Ricci curvature on every edge, then $Δ(G)\leq 17$, which then implies that $G$ is finite. This is an analogue of a result of DeVos and Mohar [{\em Trans. Amer. Math. Soc., 2007}] on the size of planar graphs with positive combinatorial curvature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源