论文标题

一种基于强盗的算法,用于公平感知的超参数优化

A Bandit-Based Algorithm for Fairness-Aware Hyperparameter Optimization

论文作者

Cruz, André F., Saleiro, Pedro, Belém, Catarina, Soares, Carlos, Bizarro, Pedro

论文摘要

大量的研究工作已被指导到算法公平,但仍然没有重大突破。实际上,需要对所有可能的技术和超参数进行详尽的搜索,以找到最佳的公平准确性权衡。因此,再加上缺乏ML从业者的工具,现实世界中的减少方法的采用仍然很少。为了解决这个问题,我们提出了Fairband,这是一种基于强盗的公平感知的超参数优化(HO)算法。 Fairband在概念上是简单,资源效率,易于实现的,并且对正在探索的客观指标,模型类型和超参数空间不可知。此外,通过将公平概念引入HO,我们可以将公平目标无缝,有效地整合到现实世界中的ML管道中。我们将Fairband与四个现实世界决策数据集上的流行HO方法进行比较。我们表明,Fairband可以通过超参数优化有效地导航公平准确性的权衡。此外,没有额外的培训成本,它始终发现配置可实现公平性,而预测精度的降低相对较小。

Considerable research effort has been guided towards algorithmic fairness but there is still no major breakthrough. In practice, an exhaustive search over all possible techniques and hyperparameters is needed to find optimal fairness-accuracy trade-offs. Hence, coupled with the lack of tools for ML practitioners, real-world adoption of bias reduction methods is still scarce. To address this, we present Fairband, a bandit-based fairness-aware hyperparameter optimization (HO) algorithm. Fairband is conceptually simple, resource-efficient, easy to implement, and agnostic to both the objective metrics, model types and the hyperparameter space being explored. Moreover, by introducing fairness notions into HO, we enable seamless and efficient integration of fairness objectives into real-world ML pipelines. We compare Fairband with popular HO methods on four real-world decision-making datasets. We show that Fairband can efficiently navigate the fairness-accuracy trade-off through hyperparameter optimization. Furthermore, without extra training cost, it consistently finds configurations attaining substantially improved fairness at a comparatively small decrease in predictive accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源