论文标题

Chern字符的超对称场理论

Chern characters for supersymmetric field theories

论文作者

Berwick-Evans, Daniel

论文摘要

当$ d = 1 $和复杂的分析椭圆形的共同体时,我们从$ d | 1 $ d | 1 $ dimensional euclidean fieldean Field Theories构建地图。这为Stolz- Teichner计划提供了进一步的证据,同时还可以在其框架内识别Chern角色的候选几何模型。该结构是作为Fei Han对K理论中Chern特征实现的更高维度和参数化的概括而产生的,作为尺寸减少$ 1 | 1 $维欧几里得田地理论。在椭圆形的情况下,主要的新功能是超级模量空间的几何形状$ 2 | 1 $二维的Tori与复杂的分析椭圆共同体的几何形状之间的微妙相互作用。作为推论,我们获得了一个完全的几何证据,即$ \ MATHCAL {n} =(0,1)$ supersymmetric量子场理论的分区函数是在Stolz和Teichner的建议之后,是弱模块化形式。

We construct a map from $d|1$-dimensional Euclidean field theories to complexified K-theory when $d=1$ and complex analytic elliptic cohomology when $d=2$. This provides further evidence for the Stolz--Teichner program, while also identifying candidate geometric models for Chern characters within their framework. The construction arises as a higher-dimensional and parameterized generalization of Fei Han's realization of the Chern character in K-theory as dimensional reduction for $1|1$-dimensional Euclidean field theories. In the elliptic case, the main new feature is a subtle interplay between the geometry of the super moduli space of $2|1$-dimensional tori and the derived geometry of complex analytic elliptic cohomology. As a corollary, we obtain an entirely geometric proof that partition functions of $\mathcal{N}=(0,1)$ supersymmetric quantum field theories are weak modular forms, following a suggestion of Stolz and Teichner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源