论文标题

深度元学习的调查

A Survey of Deep Meta-Learning

论文作者

Huisman, Mike, van Rijn, Jan N., Plaat, Aske

论文摘要

当呈现大量数据集和足够的计算资源时,深层神经网络可以取得巨大的成功。但是,他们快速学习新概念的能力是有限的。元学习是解决此问题的一种方法,可以使网络学习如何学习。深度学习的领域以很大的速度进步,但缺乏对当前技术的统一,深入的概述。通过这项工作,我们旨在弥合这一差距。在为读者提供了理论基础之后,我们研究并总结了关键方法,这些方法分为i)〜metric-,ii)〜模型 - 和III)〜基于优化的技术。此外,我们确定了主要的开放挑战,例如关于异质基准的绩效评估以及降低元学习的计算成本。

Deep neural networks can achieve great successes when presented with large data sets and sufficient computational resources. However, their ability to learn new concepts quickly is limited. Meta-learning is one approach to address this issue, by enabling the network to learn how to learn. The field of Deep Meta-Learning advances at great speed, but lacks a unified, in-depth overview of current techniques. With this work, we aim to bridge this gap. After providing the reader with a theoretical foundation, we investigate and summarize key methods, which are categorized into i)~metric-, ii)~model-, and iii)~optimization-based techniques. In addition, we identify the main open challenges, such as performance evaluations on heterogeneous benchmarks, and reduction of the computational costs of meta-learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源