论文标题

用于恢复油库的恢复因子估计的机器学习:在碳氢化合物资产评估中脱离风险的工具

Machine learning for recovery factor estimation of an oil reservoir: a tool for de-risking at a hydrocarbon asset evaluation

论文作者

Makhotin, Ivan, Orlov, Denis, Koroteev, Dmitry, Burnaev, Evgeny, Karapetyan, Aram, Antonenko, Dmitry

论文摘要

众所周知的石油回收因子估计技术,例如类比,体积计算,材料平衡,下降曲线分析,流体动力模拟具有一定的局限性。这些技术是耗时的,需要特定的数据和专家知识。此外,尽管对于此问题非常需要不确定性估计,但默认情况下,以上方法不包括此问题。在这项工作中,我们提出了一种数据驱动的技术,用于使用储层参数和代表性统计数据进行石油回收因子估计。我们将高级机器学习方法应用于历史上的油田数据集(超过2000个油田)。数据驱动的模型可以用作对石油回收因子的快速和完全客观估计的一般工具。此外,它包括使用部分输入数据并估计石油回收因子的预测间隔的能力。我们在适用于以下两种情况下的几种基于树的机器学习技术的准确性和预测间隔方面进行评估:(1)仅使用与几何学,地质,传输,存储和流体特性相关的参数,(2)使用包括开发和生产数据在内的扩展参数集。对于这两种情况,模型都证明自己是坚固且可靠的。我们得出的结论是,所提出的数据驱动方法克服了传统方法的几个局限性,并且适合于碳氢化合物储层的石油回收因子的快速,可靠和客观估计。

Well known oil recovery factor estimation techniques such as analogy, volumetric calculations, material balance, decline curve analysis, hydrodynamic simulations have certain limitations. Those techniques are time-consuming, require specific data and expert knowledge. Besides, though uncertainty estimation is highly desirable for this problem, the methods above do not include this by default. In this work, we present a data-driven technique for oil recovery factor estimation using reservoir parameters and representative statistics. We apply advanced machine learning methods to historical worldwide oilfields datasets (more than 2000 oil reservoirs). The data-driven model might be used as a general tool for rapid and completely objective estimation of the oil recovery factor. In addition, it includes the ability to work with partial input data and to estimate the prediction interval of the oil recovery factor. We perform the evaluation in terms of accuracy and prediction intervals coverage for several tree-based machine learning techniques in application to the following two cases: (1) using parameters only related to geometry, geology, transport, storage and fluid properties, (2) using an extended set of parameters including development and production data. For both cases model proved itself to be robust and reliable. We conclude that the proposed data-driven approach overcomes several limitations of the traditional methods and is suitable for rapid, reliable and objective estimation of oil recovery factor for hydrocarbon reservoir.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源