论文标题

列表同态问题的复杂性在遗传图中

Complexity of the list homomorphism problem in hereditary graph classes

论文作者

Okrasa, Karolina, Rzążewski, Paweł

论文摘要

从图$ g $到图$ h $的同构映射是从$ v(g)$到$ v(h)$的边缘保留映射。对于固定的图形$ h $,在列表同构问题中,由lhom表示($ h $),我们得到了一个图$ g $,每个顶点$ v $都配备了列表$ l(v)\ subseteq v(h)$。我们询问是否存在从$ g $到$ h $的同构$ f $,其中$ f(v)\ in L(v)$ in V(g)$中的每个$ v \ in l(v)$。费德尔,地狱和黄[JGT〜2003]证明,如果$ h $是双arc-arc-graph,则LHOM($ h $)是多项式时间溶剂,否则NP完整。 我们对图形中LHOM($ H $)问题的复杂性感兴趣,不包括一些固定图$ F $的副本作为诱导子图。众所周知,如果$ f $已连接,不是路径,也不是细分的爪子,那么对于每个非BI-ARC图,LHOM($ H $)问题是NP完整的,除非ETH失败,否则无法在次指定时间内解决。我们考虑连接图$ f $的剩余案例。 如果$ f $是一条路,我们将展示完整的二分法。我们定义了一个名为“ Predious Graphs”的类,并表明如果$ H $不占主导地位,那么对于固定的$ t $,lhom($ h $)问题都可以在quasi-polynomial时间中解决$ p_t $ - free-free-free图。另一方面,如果$ h $是巨大的,则存在$ t $,因此在$ p_t $ - free-free-free Graphs中无法以次指定时间解决lhom($ h $)。 如果$ f $是一个细分的爪子,我们在两个重要情况下显示出完整的二分法:对于$ h $具有反射性(即没有循环),对于$ h $,则反射为反射(即每个顶点都有一个循环)。除非ETH失败,否则对于Inreflexive $ h $,LHOM($ h $)问题可以在图形中以次指数时间解决,当时不包括固定的细分爪,并且仅当$ h $是无预定且无三角形的。如果$ h $是反身的,则每当$ h $不是双arc-arc图时,lhom($ h $)就无法在次指数时间内解决。

A homomorphism from a graph $G$ to a graph $H$ is an edge-preserving mapping from $V(G)$ to $V(H)$. For a fixed graph $H$, in the list homomorphism problem, denoted by LHom($H$), we are given a graph $G$, whose every vertex $v$ is equipped with a list $L(v) \subseteq V(H)$. We ask if there exists a homomorphism $f$ from $G$ to $H$, in which $f(v) \in L(v)$ for every $v \in V(G)$. Feder, Hell, and Huang [JGT~2003] proved that LHom($H$) is polynomial time-solvable if $H$ is a bi-arc-graph, and NP-complete otherwise. We are interested in the complexity of the LHom($H$) problem in graphs excluding a copy of some fixed graph $F$ as an induced subgraph. It is known that if $F$ is connected and is not a path nor a subdivided claw, then for every non-bi-arc graph the LHom($H$) problem is NP-complete and cannot be solved in subexponential time, unless the ETH fails. We consider the remaining cases for connected graphs $F$. If $F$ is a path, we exhibit a full dichotomy. We define a class called predacious graphs and show that if $H$ is not predacious, then for every fixed $t$ the LHom($H$) problem can be solved in quasi-polynomial time in $P_t$-free graphs. On the other hand, if $H$ is predacious, then there exists $t$, such that LHom($H$) cannot be solved in subexponential time in $P_t$-free graphs. If $F$ is a subdivided claw, we show a full dichotomy in two important cases: for $H$ being irreflexive (i.e., with no loops), and for $H$ being reflexive (i.e., where every vertex has a loop). Unless the ETH fails, for irreflexive $H$ the LHom($H$) problem can be solved in subexponential time in graphs excluding a fixed subdivided claw if and only if $H$ is non-predacious and triangle-free. If $H$ is reflexive, then LHom($H$) cannot be solved in subexponential time whenever $H$ is not a bi-arc graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源