论文标题
可压缩的Navier-Stokes-Fourier在稳定状态下流动
Compressible Navier-Stokes-Fourier flows at steady-state
论文作者
论文摘要
可压缩的粘性流量由Navier-Stokes-Fourier(NSF)系统控制。在本文中,我们研究了牛顿冷却法为边界传热传递而完成的NSF系统。在边界的一个部分,我们考虑了Navier滑动边界条件,而在其余部分中,入口和出口发生。通过新的固定点参数证明了弱解决方案的存在。通过这种新方法,通过求助于\(l^q \) - \(q> n \)的neumann问题,可以在Lipschitz域中弱的可溶性。因此,标准存在结果可以应用于辅助问题,并通过紧凑的技术遵循索赔。确定定量估计值。
The heat conducting compressible viscous flows are governed by the Navier-Stokes-Fourier (NSF) system. In this paper, we study the NSF system accomplished by the Newton law of cooling for the heat transfer at the boundary. On one part of the boundary, we consider the Navier slip boundary condition, while in the remaining part the inlet and outlet occur. The existence of a weak solution is proved via a new fixed point argument. With this new approach, the weak solvability is possible in Lipschitz domains, by making recourse to \(L^q\)-Neumann problems with \(q>n\).Thus, standard existence results can be applied to auxiliary problems and the claim follows by compactness techniques. Quantitative estimates are established.