论文标题

M3lung-sys:从CT成像进行多级肺肺炎筛查的深度学习系统

M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia Screening from CT Imaging

论文作者

Qian, Xuelin, Fu, Huazhu, Shi, Weiya, Chen, Tao, Fu, Yanwei, Shan, Fei, Xue, Xiangyang

论文摘要

为了应对COVID-19的爆发,对可疑病例的准确诊断在及时隔离,医学治疗和防止大流行的传播中起着至关重要的作用。考虑到有限的培训案例和资源(例如,时间和预算),我们建议通过CT Imaging从CT Imaging进行多级肺肺炎筛查的多任务多层深度学习系统(M3Lung-Sys),该系统仅包括两个2D CNN网络,即SLICE和患者和患者层分类网络。前者的目的是从丰富的CT切片而不是有限的CT卷中寻求特征表示形式,对于整体肺炎筛查,后者可以通过特征细化和聚合不同切片之间的时间信息来恢复时间信息。除了将Covid-19与健康,H1N1和CAP病例区分开外,我们的M 3肺肺部也能够找到相关病变的区域,而无需任何像素级注释。为了进一步证明我们的模型的有效性,我们对胸部CT成像数据集进行了广泛的实验,共有734名患者(251名健康患者,245名Covid-19患者,105 H1N1患者和133例CAP患者)。具有大量指标的定量结果表明我们提出的模型对切片和患者级分类任务的优越性。更重要的是,生成的病变位置图使我们的系统对临床医生来说更有价值。

To counter the outbreak of COVID-19, the accurate diagnosis of suspected cases plays a crucial role in timely quarantine, medical treatment, and preventing the spread of the pandemic. Considering the limited training cases and resources (e.g, time and budget), we propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging, which only consists of two 2D CNN networks, i.e., slice- and patient-level classification networks. The former aims to seek the feature representations from abundant CT slices instead of limited CT volumes, and for the overall pneumonia screening, the latter one could recover the temporal information by feature refinement and aggregation between different slices. In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions, without any pixel-level annotation. To further demonstrate the effectiveness of our model, we conduct extensive experiments on a chest CT imaging dataset with a total of 734 patients (251 healthy people, 245 COVID-19 patients, 105 H1N1 patients, and 133 CAP patients). The quantitative results with plenty of metrics indicate the superiority of our proposed model on both slice- and patient-level classification tasks. More importantly, the generated lesion location maps make our system interpretable and more valuable to clinicians.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源