论文标题

阿贝尔·埃诺瓦岛的无条件证据

An unconditional proof of the abelian equivariant Iwasawa main conjecture and applications

论文作者

Johnston, Henri, Nickel, Andreas

论文摘要

令$ p $是一个奇怪的素数。我们为每一个可允许的一维$ p $ adic lie扩展名的完全真实领域的iWasawa主要猜想提供了无条件的证明,其Galois Group拥有Abelian Sylow $ P $ -Subgroup。至关重要的是,此结果不取决于任何$ $ $ invariant的消失。作为应用程序,我们将Coates-Sinnott的猜想从其2美元的主要部分和泰特(Tate)动机的tamagawa数字猜想的新案例中脱颖而出。

Let $p$ be an odd prime. We give an unconditional proof of the equivariant Iwasawa main conjecture for totally real fields for every admissible one-dimensional $p$-adic Lie extension whose Galois group has an abelian Sylow $p$-subgroup. Crucially, this result does not depend on the vanishing of any $μ$-invariant. As applications, we deduce the Coates-Sinnott conjecture away from its $2$-primary part and new cases of the equivariant Tamagawa number conjecture for Tate motives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源