论文标题

OpenIE6:迭代网格标签和开放信息提取的协调分析

OpenIE6: Iterative Grid Labeling and Coordination Analysis for Open Information Extraction

论文作者

Kolluru, Keshav, Adlakha, Vaibhav, Aggarwal, Samarth, Mausam, Chakrabarti, Soumen

论文摘要

最新的最新神经开放信息提取(OpenIE)系统会迭代产生提取,需要重复对部分输出进行编码。这有很大的计算成本。另一方面,OpenIE的序列标记方法要快得多,但提取质量的较差。在本文中,我们通过提出一个基于迭代标签的系统来弥合这种权衡,该系统为Openie建立了新的最新技术,同时更快地提取10倍。这是通过一种新颖的迭代网格标签(IGL)体系结构来实现的,该结构将Openie视为二维网格标签任务。我们通过在训练时对网格应用覆盖范围(软)约束来进一步提高其性能。 此外,在观察最好的Openie系统在处理协调结构方面步履蹒跚,我们的OpenIE系统还结合了使用相同IGL架构构建的新协调分析仪。这款基于IGL的协调分析仪可帮助我们的OpenIE系统处理复杂的协调结构,同时还建立了有关协调分析任务的新最新技术,而F1比以前的分析仪有12.3分的改进。我们的Openie系统OpenIE6在F1中击败了以前的系统多达4分,而速度更快。

A recent state-of-the-art neural open information extraction (OpenIE) system generates extractions iteratively, requiring repeated encoding of partial outputs. This comes at a significant computational cost. On the other hand, sequence labeling approaches for OpenIE are much faster, but worse in extraction quality. In this paper, we bridge this trade-off by presenting an iterative labeling-based system that establishes a new state of the art for OpenIE, while extracting 10x faster. This is achieved through a novel Iterative Grid Labeling (IGL) architecture, which treats OpenIE as a 2-D grid labeling task. We improve its performance further by applying coverage (soft) constraints on the grid at training time. Moreover, on observing that the best OpenIE systems falter at handling coordination structures, our OpenIE system also incorporates a new coordination analyzer built with the same IGL architecture. This IGL based coordination analyzer helps our OpenIE system handle complicated coordination structures, while also establishing a new state of the art on the task of coordination analysis, with a 12.3 pts improvement in F1 over previous analyzers. Our OpenIE system, OpenIE6, beats the previous systems by as much as 4 pts in F1, while being much faster.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源